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Abstract. This paper addresses itself to the algorithm for minimizing the product of two nonnegative 
convex functions over a convex set. It is shown that the global minimum of this nonconvex problem 
can be obtained by solving a sequence of convex programming problems. The basic idea of this 
algorithm is to embed the original problem into a problem in a higher dimensional space and to apply 
a branch-and-bound algorithm using an underestimating function. Computational results indicate that 
our algorithm is efficient when the objective function is the product of a linear and a quadratic 
functions and the constraints are linear. An extension of our algorithm for minimizing the sum of a 
convex function and a product of two convex functions is also discussed. 
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1. Introduction 

In a recent series of articles [lo, 111, we showed that certain classes of nonconvex 
minimization problems can be solved by parametric convex minimization al- 
gorithms. 

The first class of problems is linear multiplicative programming problems 
(abbreviated as LMP) [lo], which is a special type of nonconvex quadratic 
programming problems whose objective function is the product of two linear 
functions [l, 2, 16,201. We introduced an auxiliary variable and defined the 
master problem which is equivalent to the original one. Then we applied a 
parametric simplex algorithm to the master problem. We demonstrated that our 
algorithm can solve LMP in a little more computational time than needed for 
solving the associated linear program (i.e., a linear program with the same 
constraints). The second class of problems is generalized linear multiplicative 
programming problems (GLMP) [ll] , w h ose objective function is the sum of a 
convex function and a product of two linear functions. We showed that a path 
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following (parametric programming) approach gives us a practical method to 
calculate a global minimum of GLMP. Konno, Yajima and Matsui [12] proposed 
an alternative parametric approach for a special case of GLMP in which the 
convex term of its objective function is affine or quadratic. 

We will extend the idea developed in [lo, 111 and propose an algorithm for 
minimizing the product of two nonnegative convex functions over a convex set, 
which we call a “convex multiplicative programming problem” (CMP). We 
showed in [lo] that CMP can be converted into a parametric convex minimization 
problem, but did not propose any methods for solving CMP. In this paper, we will 
solve CMP by applying a branch-and-bound procedure using an underestimating 
function of its master problem. 

The product of two convex functions appears in many areas such as mi- 
croeconomics [7], VLSI chip design [13], bond portfolio optimization [9], bic- 
riteria optimization problems [6] and so forth (see [16]). Theoretical aspects of 
this type of nonconvex problems are also dealt with in [18,19]. Readers are 
referred to the recent books [8,17] for the state-of-the-art of nonconvex minimi- 
zation as well. 

In Section 2, we will embed the original problem into its master problem by 
introducing an auxiliary variable. This reformulation enables us to apply a 
parametric programming approach. In addition, we will explain several properties 
of the master problem and show that a successive underestimation method 
[4,15,21] can be applied to the master problem. Section 3 will be devoted to the 
construction of the algorithm for solving CMP. Results of numerical experiments 
of our algorithm are also presented. It will be demonstrated that our algorithm 
can solve fairly large scale problems very efficiently. In Section 4, we will show 
that the algorithm proposed in Section 3 can be extended to minimizing (i) the 
product of three convex functions and (ii) the sum of a convex function and a 
convex multiplicative function. 

2. Master Problem for Convex Multiplicative Program 

2.1. DEFINITION OF THE MASTER PROBLEM 

Let us consider the convex multiplicative programming problem (referred to as 
CMP) defined below: 

(CW 1 
minimize g,(x) = fi(x) . fi(x) 
subject to g,(x) G 0, i=l,...,m (2.1) 

wheref,: Rn-+R1,fi: R” + R1 and gi : R” + RI, i = 1, . . . , m are twice differenti- 
able convex functions. 

g, need not be (quasi-)convex nor (quasi-)concave as the following example 
shows, so that it can have multiple local minima as demonstrated in [lo, 201. 
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EXAMPLE 1. Let x = (x, , x~)~ and let fi (x) = x1 , fi(x) = xi. The Hessian matrix 
of f&4. L&> is 

which is indefinite. 
We assume in the sequel that the feasible region: 

q 

X={xER”lg,(x)~O, i=l,...,m} (2.2) 

is nonempty and bounded, which implies that (CMP) has a finite optimal 
solution. We assume further that 

fi(X)z-0, f&)20, VXEX. (2.3) 

If either fi(x) or fi(x) attains its lower bound zero at x” E X, then x” is an optimal 
solution of (CMP). This can be checked by solving the convex minimization 
problems: 

Pk : minimize{f,(x)lx E X}, k = 1,2. (2.4) 

Therefore the assumption (2.3) can be replaced by 

f,(x>>O, f*(x)>02 VxEX (2.5) 

without loss of generality. 
Let us introduce an auxiliary variable 5 > 0 and define the following master 

problem: 

minimize G(x, 6) = (f,(x) + $ f2(x) 
(MP) subject to x E X 

c$>o. 

Under the assumption (2.5), 

Hence we obtain the following theorem: 

(2.6) 

THEOREM 2.1. Let (x*, S*) be an optimal solution of the master problem (MP). 
Then x* is an optimal solution of (CMP). q 
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Let us define the subproblem: 

PC57 minimize G(x; 5) = (f,(x) + $ f2(x) 
subject to X~ZX (2.7) 

in which 5 has some fixed positive value. Note that P( .$) is a convex minimization 
problem for all 5 > 0. Also it has an optimal solution because we assumed that the 
feasible region X is nonempty and bounded. 

Let x*( 5) be an optimal solution of P( 5) (5 >O) and let 

h(5) = W*(t), S> . w3) 

It is easy to see that h(S) is continuous for all 5 > 0. We need to locate the global 
minimum point <* of h( 8) over 5 > 0 and a-*( <*), which is guaranteed to be an 
optimal solution of the original problem (CMP). 

2.2. PROPERTIES OF THE MASTER PROBLEM 

Let %! be a family of convex functions H( 5; a, b) which have the following form: 

H(5;a,b)=&+;b (2.9) 

where a, b ER’. Then h(t) is the pointwise minimum of an infinite subset of 
functions H( 5; a, b) E %! (see Figure 1) such that 

CT+ = f,(x) 7 b = f2(4 (2.10) 

for some x E X. 
Tanaka, Thach and Suzuki [21] recently proposed a successive underestimation 

method to locate the global minimum of h( 6) over 5 > 0 when h( 0’ is the 
minimum of a finite subset of Z. Their method utilizes the following properties of 
SY: 

LEMMA 2.2. (i) Let (5,) h,) and (5;) h,) be any two points in R2 such that 
0 < & < 5,. They uniquely determine a function of 2, namely 

H( 5, qt , b,,) = 6% + i b,, 

where 

(2.11) 

(2.12) 
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0 

Fig. 1. Relation between h( 6) and X. 

(ii) Two distinct functions of 2 have at most one common point over .$ > 0, at 
which their derivatives are different. 

(iii) Any f uric ion belonging to X is Lipschitzian over 5 > &( >O). t’ 

Proof. (i) Simple arithmetic gives the formula (2.11). 
(ii) If two fu nc ions t intersect at more than two distinct points, they are identical 
because of (i). It is easy to see that the derivatives of two distinct functions of X 
are different at the point where they intersect. 
(iii) H( 5; a, b) is Lipschitz continuous with Lipschitz constant max { Ial, 1 bl /S,“} 
over 5 > 5, . q 

THEOREM 2.3. Let 5, > & > 0 and let 

Proof. Assume the contrary. Then there exists 5’ E (5,) 6,) such that 

Wt’; 5,, &;>>h(E’) = S’f~(x*(E’))+ +, f,(x*(S’)>. 
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However, the following relationships hold: 

Hence W 5; 5, , 6,) and ,$f,(x*(t’)) + $f2(x*( c’)) have at least two common 
points, which contradicts Lemma 2.2 (ii). 0 

Note that [h( ls,)[, - h( &)&] /( tz - <f) is positive because 

Similarly, [h( &) /& - h( 5,) /&I( 1 /,$t - l/t:) is positive. Therefore we can obtain 
the minimum point 5, of U( 5; 5,) 5,) over the interval [ & , &] by solving a 
quadratic equation of a single variable. Let us define a function: 

I I 

0 L 6 
Fig. 2. Underestimating function U,( 5). 

(2.15) 
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U,( 5) is obviously an underestimating function of h( .$), i.e., U,( 6) c /z(E) over 
[ 5, , &I. In addition, We have 

where the first inequality is derived by Lemma 2.2 (ii) (see Figure 2). 
Also another underestimating function U,( 5) of h( 6) over [ 5, , S,] would be 

generated by applying the above operations to either [ 5,) S,] or [tl , t,]. In this 
way, we would obtain a sequence of underestimators of h(t): 

3. Algorithm for Solving the Master Problem 

3.1. BRANCH-AND-BOUND PROCEDURE USING THE UNDERESTIMATING FUNCTION 

Suppose that the procedure of Section 2.2 generates kth underestimating function 
U,(5) of h(S) over the interval [ 5,) &I. It can be written as follows: 

uk(5)=‘(5;5,,5k,j+l>, 5E[5,tj,5k,j+ll, J=O,l,...,k (3.1) 

where ckO = 5, and tk,k+l = &. 
Let 

h( 6") = o<!?~$+l h( tkj) .- (3.2) 

which gives an upper bound of h( 6) over [ 5,) tt]. On the other hand, let 

U,(5k)=~~~~~min{U(5;5kl’5k,j+1)15E[5kj,5k,j+ll} (3.3) 

which gives a lower bound of h( <). Note that the minimum value of each U 
(5; ski, &, j+l) over [ski, &, j+l] can be easily calculated. If 

Ok) s K(Sk) (3.4) 
then Sk is obviously the global minimum point of h( 6) over [ 5,) &I. Otherwise, 
we must update the underestimating function of h( 6) to locate the global 
minimum point of h( 5). It should be pointed out that we need not search a 
subinterval [ski, tk, j+l] such that 

h(5k)~miW(5; tkj, ‘6k, j+l>16E[Ekj, 8k, j+ll> 3 (3.5) 
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We are now ready to construct a branch-and-bound procedure by putting the 
above operations together: 

Procedure PSUM ( j, z, &, &) 
1. Compute h( 5,) and h( &) by solving the subproblems P( 5,) and P( &), 

respectively. Generate the underestimation function U( 5; f , &) by using 
both the values of h( &) and h( 8,). 

2. Let 

5j=awWU(5; ts7 S,)l5E[&, 53. 
If ‘(Cji 5s> tt,) a z, then return. (Global minimum point of h( 5) does not 
exist in [ <, , (,I.) 

3. Compute h( cj) by solving the subproblem P( Sj). If h( Sj) < z, let 

z=h(cj), t*=tj. (3.6) 

If h(5j)-U(5j; ts> 5,) < E, then return. ( cj is an E-local minimum pint of 
h( S) over the interval [ & , &I). 

4. Call Procedure PSUM( j + 1, z, 5, , tj). 

5. Call Procedure PSUM( j + 1, z, ti, 5,). 0 

Choosing E > 0 small enough, we can obtain an e-global minimum point t* of 
h( 0 by calling the procedure PSUM(l, +@J, &,,i,, ,&,,), where ,&in and &,, are 
sufficiently small and large positive values, respectively. The solution of P( [*) is 
an e-optimal solution of (CMP) and (z/2)* is its e-optimal value. 

THEOREM 3.1. Procedure PSUM terminates after finitely many iterations if 
E >o. 

Proof. Assume the contrary. Then an infinite sequence ,ej, j = If 1,Z + 
2 . . (I 2 0) is generated, which converges to some number 5 E [ 5,) &I. This 
sequence must satisfy 

h(5j)-U(5j;~~jsi,5,,)~E, j=l+l,l+Z... (3.7) 

where either &, or tfj is equal to tie1 . Since h is the pointwise minimum of 
functions H( 5; a, b) E 98, it is Lipschitz continuous with a Lipschitz constant L, 
over [& , &] (Lemma 2.2(iii)). Also U is Lipschitz continuous with a Lipschitz 
constant L,. Thus 
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by noting that U( t,,-, ; tsj-, , 5tj-,> = h(Sj)* However, 

lim)5j-5j-11=0, 
j+m 

This contradicts (3.7) 

3.2. ACCELERATION OF CONVERGENCE BY EXPLOITING THE 

KARUSH-KUHN-TUCKER CONDITIONS 

Let us consider the following subproblem: 

minimize 
‘( Sj> 

G(x; tj) = Sjf,(x) + i f2(x) 
I 

subject to g,(x) s 0, i = 1, . . . , m 

q 

(3.8) 

where cj is a positive constant. Let us assume that the regularity condition holds 
at x*( tj), i.e., that the gradient vectors of binding constraints at x*( Sj) are 
linearly independent. Then there exists constants hT , i = 1, . . . , m for P( tj), 
satisfying the Karush-Kuhn-Tucker conditions [14]: 

5 vfl(x*(5j)) + i vf,(x*(tj)> + zgl ‘T vgi(x*(tj)) =O 
I 

AT=-0 I-- 7 hTgi(x*(tj))=O, i=l,...,m 

gi(x*(5j)) So 7 i=l,...,m. 

(3.9) 

Also x*( tj) is an optimal solution of P( 6) f or all value of 5 > 0 as long as the 
system: 

5 vfl(x*( tj)) + i vf22(x*( Sj>) + 2 *i ‘Sitx*(Ej)) = O 
i=l 

I h,aO, hig,(x*(2Jj))=0, i=l,. . . ,m (3.10) 

has a feasible solution. 
From the system (3.10) we can obtain an interval [i, q] such that x*( Sj) is 

optimal for all 5 E [i ,q] (see [lo] for details). This interval is nonempty because 
ej satisfies (3.10). If 5 < 5, we can ignore the interval [I!, ?$I (see Figure 3). In 
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h(f) 

Fig. 3. Improvement by the K-K-T conditions. 

addition, a better incumbent will be obtained by replacing (3.6) of Step 3 by 

2 = h(5*) =min{ Sfi(X*(Sj)) + 5 f2(X*(tj))l5 “[&j2jl]. (3.11) 

3.3. COMPUTATIONAL EXPERIMENTS 

Let us report the results of the computational experiments of Procedure PSUM 
for (CMP). We solved problems of the form: 

minimize go(x) = fr (x) . f*(x) 
subject to Ax 3 b , X30 

where 

fi (x) = dx + ; x’Q’Qx , f2(x) = d’x 

and c, d E R”, b E R”, A E R”“” and Q E R”““. All elements of A, b, c, d and Q 
were randomly generated, whose ranges are [O, 1.01. Matrices A and Q’Q are 
almost dense, i.e., about 70 percent of their elements are nonzero. 

Let us note that an optimal solution of P( 5) is equal to the optimal solution x0 
of a linear program: minimize{ d’xl Ax 2 b, x 2 0} if 5 > 0 is small enough. Thus 
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we choose bin as the maximal value of 5 such that x0 is optimal for P( 8). t,,, was’ 
always fixed at 105. 

Subproblems P( 0 were solved by the reduced gradient method [22]. Direction 
vectors were generated by applying the conjugate gradient procedure [5]. Pro- 
grams were coded in C language and ran on a SUN4/280S computer. The size of 
problems ranges from (m, n) = (10,20) to (130,100). 

Table I shows the computational results of Procedure PSUM for ten examples 
for each size when LJ = 10p5. The average CPU time (A.v.), its standard deviations 
(S.d.), the average number of branchings and its minimum (Min.) and maximum 
(Max.) values are listed in it. The number of branchings corresponds to the 
number of subproblems P( tj) generated in the course of computation. Table II 
shows the results of PSUM revised by exploiting the K-K-T conditions. Since the 
feasible region of the test problem is a polyhedron, the procedure stated in 
Section 3.2 could be carried out whenever x*( Sj) is a basic solution. The number 
of basic solutions appeared in the course of computation are also listed in Tables I 
and II. Table III shows the results when (m, n) = (30,50) and the value of the 
tolerance 8 ranges from 10m3 to 10p7. 

We see from these tables that Procedure PSUM in insensitive to the magnitude 
of E. This is primarily due to the fact that many branchings were terminated in 2 
of Procedure PSUM. It should be emphasized that the number of branchings are 
very small. This owes very much to an excellent lower bound given by the 
underestimating function U. It is also worth noting that the number of branchings 
increase very slowly as the size of problems get larger. Therefore, large sparse 
problems would be solved efficiently by using sparse matrix techniques. Finally, 
modification stated in Section 3.2 appears to be fairly effective as is shown in 
Tables I and II. 

Table I. Results of PSUM for (CMP), E = 10m5 

m 10 30 30 70 70 130 
n 20 20 50 50 100 100 

(1) CPU time (in seconds) 
Av. 0.435 
S.d. 0.204 

(2) # of branchings 
Av. 7.0 
Min. 5 
Max. 9 

(3) # of basic solutions 
Av. 4.6 
Min. 1 
Max. 7 

(1)/W 
Av. 0.0621 

2.028 7.828 52.898 167.255 481.695 
0.366 1.895 15.509 53.122 146.800 

7.9 
6 

12 

4.4 3.7 6.0 5.5 5.7 
1 1 4 1 3 
7 7 9 10 9 

0.2568 1.0167 4.7231 15.3445 43.7905 

7.7 
4 

11 

11.2 
8 

21 

10.9 
7 

20 

11.0 
9 

15 
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Table II. Results of PSUM revised bv the K-K-T conditions. E = lo-’ 

??I 10 30 30 70 70 130 
?I 20 20 50 50 100 100 

(1) CPU time (in seconds) 
Av. 0.433 1.938 7.620 48.880 157.808 487.082 
S.d. 0.195 0.451 1.949 17.250 50.0299 180.586 

(2) # of branchings 
Av. 5.4 5.6 5.8 8.3 8.5 9.1 
Min. 3 3 3 4 6 6 
Max. 8 12 11 17 14 18 

(3) # of basic solutions 
Av. 2.9 2.2 2.4 3.8 3.5 3.8 
Min. 1 1 1 2 1 3 
Max. 4 3 4 5 6 6 

(1)/G? 
Av. 0.0802 0.3461 1.3138 5.8892 18.5657 53.5255 

Table III. Results of PSUM revised by the K-K-T conditions, (m, n) = (30,50) 

E lo3 

(1) CPU time (in seconds) 
Av. 7.643 
S.d. 1.933 

(2) # of branchings 
Av. 5.3 
Min. 3 
Max. 8 

OYW 
Av. 1.4421 

lo4 105 lo6 lo7 

7.613 7.620 7.713 7.718 
1.929 1.949 1.945 1.926 

5.5 5.8 6.1 6.2 
3 3 3 3 
9 11 11 12 

1.3842 1.3138 1.2645 1.2449 

4. Generalized Convex Multiplicative Program 

We show that the parametric successive underestimation method for convex 
multiplicative programs can be extended to a generalized convex multiplicative 
programming problem (GCMP): 

(GCMP) / 
minimize go(x) = &(x) + fi(x). f*(x) 
subject to g,(x)<O, i= 1,. . . , m (4.1) 

where fk : R”+ R’, k = 0, 1,2 and gi : R”+ R’, i = 1, . . . , m are twice differenti- 
able convex functions. Any method for solving (GCMP) can be used as a 
procedure for minimizing the product of three convex functions F,(x). F,(x) - 
F2(x) over a convex set X, which frequently appears in multicriteria optimization 
problems, because the objective function of its master problem can be written as 
T#,(x) + 4&‘,(x). E;,(x) by introducing an auxiliary variable q (Section 2). 
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As before, we assume that the feasible region: 

X={xER”Ig,(x)~O, i=l,...,m) 

is nonempty and bounded and that 

The master problem can be defined as follows: 

minimize [fd41’ 
(MP) subject to 

G(x, 5) = fO(x) + 5 2 + 1 [f*Wl” 
E X 

5 2 
x 
c>o. 

(4.2) 

(4.3) 

This problem is equivalent to (GCMP) under the assumption (4.3) (see Theorem 
2.1 of [ll]). 

THEOREM 4.1. Let (x*, <*) be an optimal solution of (4.4). Then x* is an 
optimal solution of (4.1). q 

For any fixed 5 > 0, the subproblem: 

P(5) minimize [fi(X>l” Gl(x; S) = fO(x) + t 2 + 1 [f2(41” 

subject to x E X 
5 2 (4.5) 

is a convex minimization problem. 
Let x*( 6) be an optimal solution P( 5) and let 

h(5) = @x*(t); 8. (4.6) 

We need to obtain the global minimum point <* of h( 6) over 5 > 0 and x*( ,$*), 
which is an optimal solution of (GCMP). 

4.1. UNDERESTIMATING FUNCTIONS FOR THE MASTER PROBLEM 

Let SY’ be a family of convex functions H( 5; a, b, c) of the following form: 

H(,$;a,b,c)=a+,$b+Ic 
5 (4.7) 

where 

[f&>l” [f2Wl’ a=fJx), b=2, c=- 2 (4.8) 
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for some x E X. h( &) is the pointwise minimum of an infinite number of functions 
H( 5; a, b, c) E X’. 

Let 

p = minimize{f,(x)]x E X} (4.9) 

and let us define a function: 

R(5; q)=p + 54 (4.10) 

for q E R1. 

LEMMA 4.2. R(& q) and H( 5; a, b, c) E X1 have at most one common point 
over 5 > 0, at which their derivatives are different. 

Proof. The intersection points of R( 5; q) and H( 5; a, b, c) are given by solving 
the system: 

e2(b-q)+t(a-p)+c=O. 

If this system has solutions 5’ and c”, then the following relationships hold: 

Since p s f,(x) for any x E X, either 5 or 5” must be negative. The latter part can 
be easily checked by a simple arithmetic. 0 

THEOREM 4.3. Let <, > 0 and let q[ = [h( &) - p] I.$,. Then 

R(5; qt) G h(5) > ‘J5 E(O,t,l. 
Proof. Assume that there exits 5’ E (0, t,] such that 

(4.11) 

R( 5’; qt) > h( S’) = H( 5’; a’, b’, c’) 

where 

[fI(~*w>)l’ [f*(x*w))l” 
a’=fo(x*(l’)), b’= 2 , c’= 2 . 

However, 

lim [H(,$; a’, b’, c’) - R(e; qt)] = +m 
c-t+0 

and 
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R(5,; 9,) = h(5,) 
1 

c a’ + &b’ + - c’ . 
c* 

Hence R( 5; qt) and H( 5; a’, b’, c’) have at least two common points, which 
contradicts Lemma 4.2. 0 

Let us define a function 

L((;r)=p+ $ r (4.12) 

for I E R1. L( 5; Y) has the similar properties to R( 5; q). 

LEMMA 4.4. I!,(.$; ) r and H( 5; a, b, c) E 2” have at most one common point 
over ,$ > 0, at which their derivatives are different. II 

THEOREM 4.5. Let & >O and let rs = &[h(.&) -p]. Then 

Let 

L(5;r,)ch(E), vta5, 0 

W5; 5,, 5,) --ax R 5; I( 
h(L) -P 

5, 
) > L(5; 5JN5,) -PI)} 

t U(C; L, b) ;:-; i.... . . . . . ..:,: . ..I\ . . . . ._ .:.;:. 
..I... 

(4.13) 

(4.14) 

Fig. 4. Underestimating function U( 5; 5,) 6,). 
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then U is a piecewise convex underestimating function of h( 6) over the inter_val 
[Es 9 &I (0 < 5s < St> ( see F g i ure 4). We can easily obtain the minimum point 5 of 
this function, which is given by an intersection of R( 5; [h( 6,) - p] /.&) and 
L(5; 5;-[h(&:,) -PI), i.e., 

(4.15) 

U( .$; 5,) 5,) is a lower bound of the global minimum value of /z(e) over the 
interval [ 5, , ct]. Thus (GCMP) can be solved by Procedure PSUM using the 
underestimating function U defined by (4.14). Since both L and R are obviously 
Lipschitz continuous over 5 > 0, the convergence of PSUM is guaranteed in this 
case as well. 

4.2. ALGORITHM WITH LOCAL SEARCH 

The minimum point co of each H( 5; a, b, c) E FE over 5 > 0 is given by 5’ = 
m. By using this property of X’, we can obtain a local minimum point of h(S) 
as follows: 

Procedure LS( 0 

1. Compute x*(s) by solving P(s). 

2. Let 

f&*( 0) 
5o = fi(x*Q3 . 

If co = 5, then halt. (5’ is a local minimum point.) Otherwise, let 6 = 6’ and 
return to Step 1. 0 

We would be able to accelerate the convergence of PSUM by called Procedure 
Ls( twin> and Ls( 5max> in advance. Let ,$ki, be the output of LS( ,&,,) and let 
5’ max be that of LS( t,,,). Then we would have an interval [ tki,, ,$;,,I which is 
smaller than [ ,F&,, &,,,I. Also let 

2’ = min{h(Sk,), h( tL,,>> (4.16) 

then z’ can be used as an incumbent value of the global minimum value h( t*). 

4.3. COMPUTATIONAL EXPERIMENTS 

We will report the results of the computational experiments of Procedure PSUM 
for (GCMP) using the underestimating function stated in the previous subsection. 
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We solved problems: 

minimize fO(x) + fi (x) . fi(x) 
subject to Axa b , x20 

where 

ck E R” (k = 0, 1,2), b E R”, A E Rmx” and Q E Rnx”. All elements of A, b, ck 
and Q were randomly generated, whose ranges are [O.O, 1.01. 

tmin and 5ma.x were determined by solving minimize { cixl Ax 2 b, x 3 0} and 
minimize { cix ] Ax 2 b, x 2 0}, respectively. As before, Subproblems P( 5) were 
solved by the reduced gradient method, programs were coded by C language and 
ran on a SUN4/280S computer. 

Table IV shows the computational results of Procedure LS and PSUM for ten 
examples for each size when E = 10p5. The average CPU time (AV.), its standard 
deviations (S.d.), the average number of iterations (or branchings) and its 
standard deviation of both the procedures are listed in it. The number of 
iterations as well as branchings corresponds to that of subproblems P( ti) solved 
in the course of computation. Table V shows the results of PSUM for the 
different values of the tolerance E when (m, n) = (30,50). 

Table IV includes the average CPU time of the discrete approximation method 

Table IV. Results for (GCMP), E = 1O-5 

m 10 30 30 70 70 130 
n 20 20 50 50 100 100 

LS: (1) CPU time (in seconds) 
Av. 0.685 3.298 
S.d. 0.245 0.889 

(2) # of iterations 
Av. 15.6 23.1 
S.d. 3.7 12.2 

PSUM: (3) CPU time (in seconds) 
Av. 1.170 4.392 
S.d. 2.945 11.307 

(2) # of branchings 
Av. 114.7 171.2 
S.d. 329.0 510.6 

Total: (1) + (3) 
Av. 1.855 7.690 

DAM: CPU time (in seconds) 
Av. 0.985 3.263 

15.712 50.368 186.945 449.537 
6.239 12.087 57.807 121.305 

29.1 22.7 32.8 36.9 
17.6 11.4 6.9 15.2 

24.407 124.457 427.670 553.273 
34.975 197.759 741.259 732.759 

306.8 783.0 372.4 479.0 
738.1 1212.0 553.8 849.1 

40.118 174.825 614.615 1002.810 

16.420 55.463 229.648 511.422 
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Table V Results for (GCMP), (m, n) = (30,50) 

E 1om3 lo-4 1O-5 W6 lo-’ 

PSUM: 

Total: 

(3) CPU time (in seconds) 
Av. 13.177 17.267 
S.d. 8.279 16.185 

(4) # of branchings 
Av. 50.8 107.2 
S.d. 64.4 190.6 

(1) + (3) 
Av. 28.880 32.958 

24.407 36.555 81.820 
34.975 67.306 177.579 

306.8 858.4 2961.6 
738.1 2230.5 3319.3 

40.118 52.275 97.522 

(DAM) proposed in [ll]. We chose the lattice points tj’s in DAM by the 
following formula: 

xi = &, + 2’.* - 1 , j = 0, 1, . . . , 100 

where A = log( &,,,, - tmi, + l)/lOO. Let 

5, = argmin{h(5j)]0si s lOO} 

and call Procedure LS( &). If the derivative of h at sj was positive, we omitted to 
compute h( cj). 

The underestimating function for (GCMP) defined by (4.14) is not as good as 
the one for (CMP). However, we see from these tables that the combination of 
Procedure LS and PSUM can generate a 10-5-optimal solution of the test 
problem in only twice as much computational time as needed by the discrete 
approximation method. In addition, the value obtained by PSUM always satisfies 
the tolerance E. It would be possible to construct a hybrid of PSUM and DAM, 
which will be discussed elsewhere. 

Acknowledgements 

This research was supported in part by Grant-in-Aid for Scientific Research of the 
Ministry of Education, Science and Culture, Grant No. 63490010. Also the 
authors would acknowledge the generous support of the Energy Research Insti- 
tute, Hitachi Co. Ltd. 

References 

1. Aneja, Y. P., V. Aggatwal, and K. P. K. Nair (1984) ‘On a Class of Quadratic Programming’, 
European J. of Oper. Res. 18, 62-70. 

2. Bettor, C. R. and M. Dahl (1970), ‘Simplex Type Finite Iteration Technique and Reality for a 
Special Type of Pseudo-Concave Quadratic Functions’, Cahiers du Centre d’Etudes de Recherche 
Operationnelle 16, 207-222. 



PARAMETRIC SUCCESSIVE UNDERESTIMATION METHOD 285 

3. Chvgtal, V. (1983), Linear Programming, W. H. Freedman and Company. 
4. Falk, J. E. and K. R. Hoffmann (1976), ‘A Successive Underestimating Method for Concave 

Minimization Problems’, Mathematics of Operations Research 1, 251-259. 
5. Fletcher, R. and C. M. Reeves, (1964), ‘Function Minimization by Conjugate Gradients’, 

Computer Journal 7, 149-154. 
6. Geoffrion, A. (1967), ‘Solving Bicriterion Mathematical Programs’, Oper. Res. 15, 39-54. 
7. Henderson, J. M. and R. E. Quandt (1971), Microeconomic Theory, McGraw-Hill. 
8. Horst, R. and H. Tuy (1990), Global Optimization: Deterministic Approaches, Springer-Verlag. 
9. KOMO, H. and M. Inori (1988), ‘Bond Portfolio Optimization by Bilinear Fractional Programming’, 

J. of Oper. Res. Sot. of Japan 32, 143-158. 
10. Konno, H. and T. Kuno (1989), ‘Linear Multiplicative Programing’, IHSS 89-13, Institute of 

Human and Social Sciences, Tokyo Institute of Technology (to appear in Mathematical Program- 
ming, Ser. A). 

11. Konno, H. and T. Kuno (1990) ‘Generalized Linear Multiplicative and Fractional Programming’, 
Annals of Operations Research 25, 147-162. 

12. Konno, H., Y. Yajima, and T. Matsui (1991), ‘Parametric Simplex Algorithm for Solving a 
Special Class of Nonconvex Minimization Problems’, J. of Global Optimization 1, 65-81. 

13. Maling, K., S. H. Mueller, and W. R. Heller (1982), ‘On Finding Most Optimal Rectangular 
Package Plans’, Proceedings of the 19th Design Automation Conference, 663-670. 

14. Mangasarian, 0. L. (1969), Nonlinear Programming, McGraw-Hill. 
15. McCormick, G. P. (1976), ‘Computability of Global Solutions of Factorable Nonconvex Pro- 

grams: Part I Convex Underestimating Problems’, Mathematical Programming 10, 147-175. 
16. Pardalos, P. M. (1988), ‘Polynomial Time Algorithms for Some Classes of Constrained Non- 

convex Quadratic Problems’ Computer Science Department, The Pennsylvania State University. 
17. Pardalos, P. M. and J. B. Rosen (1987), Global Optimization: Algorithms and Applications, 

Springer-Verlag, Lecture Notes in Computer Science 268. 
18. Schaible, S. (1974), ‘Maximization of Quasiconcave Quotients and Products of Finitely Many 

Functions’, Cahiers du Centre d’Etudes de Recherche Operationnelle 16, 45-53. 
19. Schaible, S. (1973), ‘Quasiconcavity and Pseudoconcavity of Cubic Functions’, Mathematical 

Programming 5, 243-247. 
20. Swarup, K. (1966), ‘Programming with Indefinite Quadratic Function with Linear Constraints’, 

Cahiers du Centre d’Etudes de Recherche Operationnelle 8, 133-136. 
21. Tanaka, T., P. T. Thach, and S. Suzuki (1988), ‘Methods for an Optimal Ordering Policy for 

Jointly Replenished Products by Nonconvex Minimization Techniques’, Department of Mechani- 
cal Engineering, Sophia University. 

22. Wolfe, P. (1967), ‘Methods of Nonlinear Programming’, in J. Abadie (ed.), Nonlinear Program- 
ming, North-Holland. 


